Force_between_two_cylindrical_magnets Force_between_magnets



exact force between 2 coaxial cylindrical bar magnets several aspect ratios.


for 2 cylindrical magnets radius



r


{\displaystyle r}

, , length



l


{\displaystyle l}

, magnetic dipole aligned, force can computed analytically using elliptic integrals. in limit



x

r


{\displaystyle x\gg r}

, force can approximated by,







f
(
x
)




π

μ

0



4



m

2



r

4



[


1

x

2




+


1

(
x
+
2
l

)

2








2

(
x
+
l

)

2





]



{\displaystyle f(x)\simeq {\frac {\pi \mu _{0}}{4}}m^{2}r^{4}\left[{\frac {1}{x^{2}}}+{\frac {1}{(x+2l)^{2}}}-{\frac {2}{(x+l)^{2}}}\right]}



where



m


{\displaystyle m}

magnetization of magnets ,



x


{\displaystyle x}

distance between them. small values of



x


{\displaystyle x}

, results erroneous force becomes large close-to-zero distance.


if magnet long (



l

r


{\displaystyle l\gg r}

), measurement of magnetic flux density close magnet




b

0




{\displaystyle b_{0}}

related



m


{\displaystyle m}

formula








b

0



=




μ

0


2


m


{\displaystyle b_{0}\,=\,{\frac {\mu _{0}}{2}}m}

.

the effective magnetic dipole can written as







m
=
m
v


{\displaystyle m=mv}



where



v


{\displaystyle v}

volume of magnet. cylinder



v
=
π

r

2


l


{\displaystyle v=\pi r^{2}l}

.


when



l

x


{\displaystyle l\ll x}

point dipole approximation obtained,







f
(
x
)
=



3
π

μ

0



2



m

2



r

4



l

2




1

x

4




=



3

μ

0




2
π




m

2



v

2




1

x

4




=



3

μ

0




2
π




m

1



m

2




1

x

4






{\displaystyle f(x)={\frac {3\pi \mu _{0}}{2}}m^{2}r^{4}l^{2}{\frac {1}{x^{4}}}={\frac {3\mu _{0}}{2\pi }}m^{2}v^{2}{\frac {1}{x^{4}}}={\frac {3\mu _{0}}{2\pi }}m_{1}m_{2}{\frac {1}{x^{4}}}}



which matches expression of force between 2 magnetic dipoles.








Comments